Seismic hazard in the Shillong plateau region, India

Seismotectonic processes of the Shillong Plateau (SP) have been influenced by the Himalayan orogeny, the India-Burmese subduction, and the Bengal Basin evolution leading to high seismic activity in the region. A probabilistic assessment of the seismic hazard of the SP was carried out in order to provide scientific information to the engineering and disaster risk management communities. Seismic hazard analysis is used to determine ground fluctuations in densely populated areas of the SP and, in particular, in the cities of Shillong, Nongpoh and Tura. This analysis is based on the use of historical and instrumentally recorded regional earthquakes since 1411 and deals with uncertainties related to earthquake magnitudes, rupture locations, and the frequency of ground motion exceedance.

More“Seismic hazard in the Shillong plateau region, India”

Geodynamics, seismicity and seismic hazard of the Caucasus

To understand how geodynamic processes affect seismicity and what danger earthquakes pose in the Caucasus, a group of scientists from Russia, Azerbaijan, Armenia, Georgia, Germany, the Netherlands, the United States, and Switzerland conducted a study analyzing a large number of works on geology, geotectonics, geodesy, gravics, seismicity, seismic tomography, heat flow, magmatism, volcanism and its manifestations in the geological past in the Caucasus and determined the prospects for the development of research in the region. The paper was published in Earth-Science Reviews (Q1, JIF = 9.724). More“Geodynamics, seismicity and seismic hazard of the Caucasus”

Lava dome morphology inferred from numerical modelling

Source: OXFORD Academic

Lava domes form when highly viscous magmas erupt on the surface. Several types of lava dome morphology can be distinguished depending on the flow rate and the rheology of magma. Here, we develop a 2-D axisymmetric model of magma extrusion on the surface and lava dome evolution and analyse the dome morphology using a finite-volume method implemented in Ansys Fluent software. The magma/lava viscosity depends on the volume fraction of crystals and temperature. We show that the morphology of domes is influenced by two parameters: the characteristic time of crystal content growth (CCGT) and the discharge rate (DR). More“Lava dome morphology inferred from numerical modelling”